Lessons from Deploying AI in Healthcare

James Zou Stanford University March 5, 2022

www.james-zou.com

jamesz@stanford.edu

Example 1: deploying cardiology AI

Article | Published: 25 March 2020

Video-based AI for beat-to-beat assessment of cardiac function

David Ouyang ⊠, Bryan He, Amirata Ghorbani, Neal Yuan, Joseph Ebinger, Curtis P. Langlotz, Paul A. Heidenreich, Robert A. Harrington, David H. Liang, Euan A. Ashley & James Y. Zou ⊠

Nature 580, 252–256(2020) Cite this article

Bryan He

Ouyang et al. Nature 2020

Computer vision assesses cardiac ultrasound

Algorithm output

EchoNet assessed chamber area

Algorithm mimics clinical workflow

EchoNet-Dynamic

Liver

•••

Idea: use temporal segmentation to focus attention of model.

Ouyang et al. Nature 2020

Achieves expert performance in new hospital

Predicting heart failure

Examples

Example 2: AI to improve telemedicine

COVID-19

50x increase in digital visits

Many patient photos for telemedicine are poor quality

- Manual review of photos prior to the physician encounter consumed >2000 hours in 2021 at Stanford
- Poor quality photos disrupt clinic workflow
- Improving teledermatology = improving access to care

TrueImage = Online check deposit for dermatology

TrueImage Workflow

TrueImage Algorithm

Vodrahalli et al, PSB 2021

Prospective study at Stanford

TrueImage filters 80% of poor quality photos; takes <1 minute per patient

What does improvement look like?

Deploying TrueImage at Stanford clinics

Launch Gradio interface on HIPAA compliant servers Your private AWS/GCP machine creates tunnel and public link

Your authorized users can now access the model

Example 3: AI to design clinical trials

Article | Published: 07 April 2021

Evaluating eligibility criteria of oncology trials using real-world data and AI

Ruishan Liu, Shemra Rizzo, Samuel Whipple, Navdeep Pal, Arturo Lopez Pineda, Michael Lu, Brandon Arnieri, Ying Lu, William Capra, Ryan Copping 🖂 & James Zou 🖂

Nature 592, 629–633(2021) | Cite this article

Google launches AI health tool for skin conditions 5/18/21

Breakthrough development will assist users in self-diagnosing issues ranging from acne to melanoma

A woman checks birthmarks on her back. Derm Assist will be free to all internet users, whether they are Google users or not © Albina Gavrilovic/Getty

AI dermatology apps

Original reported: 0.93 AUC

Stanford patients: 0.60 AUC

ModelDerm

Roxana Daneshjou

Why did the Derm AI performance crater?

Roxana Daneshjou

Data used to test 130 FDA-approved AI

93/130 did not report multi-site evaluation Only 4 prospective studies

Wu et al. Nature Medicine 2021

Large variability in cross site performance

Site	Stanford (N=19K)	Boston (N=23K)	NIH (N=11K)
Stanford	0.90 ± 0.01	0.87 ± 0.01	0.85 ± 0.02
Baylor	0.83 ± 0.01	0.89 ± 0.01	0.84 ± 0.02
NIH	0.78 ± 0.01	0.76 ± 0.02	0.88 ± 0.02

Pneumothorax detection

Wu et al. Nature Medicine 2021

Lessons for deploying trustworthy medical AI

- 1. Understand what data is used to develop the AI.
- 2. Understand why AI makes systematic mistakes.
- 3. Use human-in-the-loop evaluation.

Lessons for deploying trustworthy medical AI

- 1. Understand what data is used to develop the AI.
- 2. Understand why AI makes systematic mistakes.
- 3. Use human-in-the-loop evaluation.

1. Data used to train dermatology AI

Daneshjou et al. JAMA Derm 2022

1. Transparent dataset and code

EchoNet-Dynamic

A Large New Cardiac Motion Video Data Resource for Medical Machine

Learning

Home Introduction Motivation Dataset Baseline Model Leaderboard Accessing Dataset Citation

90 -	st.	-				Dataset Label Variables							Collaborators are only visible to		
≻ 60 - 30 -					V	ariable	Descrip	otion						folder owner and	d co-owners.
			1	F	ileName	Hashed	file name	used to lin	k videos, l	abels, and	annotation	ns	BA Owner		
0.	0				E	F			calculated		,			Do David Ouy	ang
90.	0 - 00 - 60 -			*		SV DV	End dia	End systolic volume calculated by method of discs End diastolic volume calculated by method of discs					A System Acc Co-owner	ount	
60 -					V	leight Vidth	Video I Video V	Width						SA System Acc Co-owner	ount
30 -						PS		Frames Per Second					Johanna Ki Co-owner	m	
0 -L	$\begin{array}{c c c c c c c c c c c c c c c c c c c $								arking	+121 Peop Externally	le Shared				
OX1B089	5E4993C 79 0X1B1799BF5669 FB07	0X1B2089E659E6 AA87	OXTB2241C91CC DEF05	OX1B2900BF089A D45F	0X1B6045BB5315 1A4A	0X1B7833C5A54B 5FF2	0X1B49047F9A40 121	0X1B165975B5EF 65D9	0X1B170168A644 9950	0X1B53202748E0 AB3F	0X1B37993135742 8C0	0X1BA7A8147245 AB28	OX1BA8C753E08F B53F	0X1BA53DA5F128 AB92	OX1BA265AD5BF 096E5
OX1BA55		0X1BB19B668CF2 A22E	OX1BB609E66AC3 4DE	0X1BB47462D0C4 70D5	0X1BB91877C1F2 F21E	0X1BC515434037 562D	0X1BCA569AEE7F CFC6	0X1BCA2217072B CB55	OX1BCAECCA681 C2F1A	OX1BCC6B1BA8F EBC5	0X1BCC98038783 10C8	OX1BCDOAD72EC B908A	OX1BD5EEAC641 B0443	0X1BD7A625C9D A5292	0X1BD453F455D3 0DEA
OX1BE3F Ce		OX1BEA6959BDF3 CC69	OX1BED31FBCDA 78011	OX1BF00F2E669B 915E	OX1BF56B66ECD9 3FED	OX1BFF8D71CA00 70FF	OX1COBDFA4E539 B43B	0X1C1A328EA29B 6CC3	OX1C1E4272FA76 78DD	0X1C1F4EA2045C 5402	0X1C4BA7E6CC2 26887	0X1C5B6810C622 4D33	OX1C5E88A03170 SASE	0X1C7A7B6A9AF 3D511	OX1C7C2D50F32 C91CF

Largest public dataset of medical videos.

Lessons for deploying trustworthy medical AI

- 1. Understand what data is used to develop the AI.
- 2. Understand why AI makes systematic mistakes.
- 3. Use human-in-the-loop evaluation.

2. Why did the model make this mistake?

Conceptual explanation of mistakes

Conceptual explanation of mistakes

Mistakes made by the model

Output of our AI mistake explainer

Abubakar Abid, Mert Yuksekgonul

Lessons for deploying trustworthy medical AI

- 1. Understand what data is used to develop the AI.
- 2. Understand why AI makes systematic mistakes.
- 3. Use human-in-the-loop evaluation.

3. Al often optimizes the wrong objective

Abubakar Abid

Optimize for human usage instead!

Abubakar Abid

Human-in-the-loop evaluation of ML impact

Kailas Vodrahalli

Worse AI can be better for humans

Uncalibrated = overconfident models

Kailas Vodrahalli

Abid et al Nature Machine Intelligence 2020

Abid et al Nature Machine Intelligence 2020

gradio used for Stanford's 1st real-time AI trial

Lessons for deploying trustworthy medical AI

- 1. Understand what data is used to develop the AI.
- 2. Understand why AI makes systematic mistakes.
- 3. Use human-in-the-loop evaluation.

Resources and thanks

Papers and codes available www.james-zou.com

Disparity in dermatology AI Daneshjou et al. *JAMA Dermatology* 2021

Data transparency for biomedical AI Wu et al *Nature Medicine* 2021

Video-based AI for cardiac assessment. Ouyang et al. *Nature* 2020

Explaining model mistakes Abid, Yuksekgonul, Zou. In review 2022

Gradio for human-in-the-loop Al Abid et al. *Nature Machine Intelligence* 2020 Roxana Daneshjou

Eric Wu

David Ouyang

Abu Abid

Thanks to: NIH, NSF CAREER, Sloan, Chan-Zuckerberg